SmaLL-ScaLE qUanTUm cOmPUTInG
نویسنده
چکیده
I l l u s t r a t I o n b y C o h e r e n t I m a g e s SmaLL-ScaLE qUanTUm cOmPUTInG devices built on a variety of underlying physical implementations exist in the laboratory, where they have been evolving for over a decade, and have demonstrated the fundamental characteristics necessary for building systems. The challenge lies in extending these systems to be large enough, fast enough, and accurate enough to solve problems that are intractable for classical systems, such as the factoring of large numbers and the exact simulation of other quantum mechanical systems. The architecture of such a computer will be key to its performance. Structurally, when built, a “quantum computer” will in fact be a hybrid device, with quantum computing units serving as coprocessors to classical systems. The program, much control circuitry, and substantial preand postprocessing functions will reside on the classical side of the system. The organization of the quantum system itself, the algorithmic workloads for which it is designed, its speed and capabilities in meeting those goals, its interfaces to the classical control logic, and the design of the classical control systems are all the responsibility of quantum computer architects. In this article, we review the progress that has been made in developing architectures for full-scale quantum computers. We highlight the process of integrating the basic elements that have already been developed, and introduce the challenges that remain in delivering on the promise of quantum computing. The most famous development to date in quantum algorithms is Shor’s algorithm for factoring large numbers in polynomial time. While the vernacular press often talks of factoring large numbers “in seconds” using a quantum computer, in reality it is not even possible to discuss the prospective performance of a system without knowing the physical and logical clock speed, the topology of the interconnect among the elements, the number of logical quantum bits (qubits) available in the system, and the details of the algorithmic implementation—in short, without specifying the architecture. Figure 1 illustrates the impact that architecture can have on the bottom-line viability of a quantum computer; here, A Blueprint for Building a Quantum Computer
منابع مشابه
IMPACTS AND CHALLENGES OF CLOUD COMPUTING FOR SMALL AND MEDIUM SCALE BUSINESSES IN NIGERIA
Cloud computing technology is providing businesses, be it micro, small, medium, and large scale enterprises with the same level playing grounds. Small and Medium enterprises (SMEs) that have adopted the cloud are taking their businesses to greater heights with the competitive edge that cloud computing offers. The limitations faced by (SMEs) in procuring and maintaining IT infrastructures has be...
متن کاملA New Model Representation for Road Mapping in Emerging Sciences: A Case Study on Roadmap of Quantum Computing
One of the solutions for organizations to succeed in highly competitive markets is to move toward emerging sciences. These areas provide many opportunities, but, if organizations do not meet requirements of emerging sciences, they may fail and eventually, may enter a crisis. In this matter, one of the important requirements is to develop suitable roadmaps in variety fields such as strategic, ca...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملTop Benefits and Hindrances to Cloud Computing Adoption in Saudi Arabia: A Brief Study
Cloud computing is an emerging concept of information technology that in many countries has an influence on many companies. The research was conducted to evaluate cloud computing adoption in Saudi Arabia; Benefits and hindrances for small and medium-sized enterprises (SMEs). The qualitative research approach is performed by interviews with the management of a variety of SMEs active in the infor...
متن کاملControlling Quantum Computing
One promising approach for scalable quantum computing is to use an alloptical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to large...
متن کاملQuantum Photonic Circuit
One promising approach for scalable quantum computing is to use an alloptical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to large...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013